CTX130 allogeneic CRISPR-Cas9–engineered chimeric antigen receptor (CAR) T cells in patients with advanced clear cell renal cell carcinoma: results from the phase 1 COBALT-RCC study

Sumanta K Pal, MD1, Ben Tran, MBBS, FRACP2, John B. Haanen, MD, PhD3, Michael Hurwitz, MD, PhD4, Adrian Sacher, MD5, Neeraj Argawal, MD6, Nizar Tannir, MD7, L. Elizabeth Budde, MD1, Simon Harrison MBBS, PhD, FRACP2, Sebastian Klobuch, MD3, Sagar S. Patel, MD6, Mary-Lee Dequeant, PhD8, Verena Karsten, PhD9, Kaitlyn Cohen, MS8, Ellen B. Gurary, PhD8, Henia Dar, PhD8, Anna Ma, MS8, Anjali Sharma, MD8, Samer A. Srour, MD7

1City of Hope Comprehensive Cancer Center, Duarte, CA; 2Peter MacCallum Cancer Centre, Melbourne, Australia; 3Netherlands Cancer Institute, Amsterdam, Netherlands; 4Yale School of Medicine, New Haven, CT; 5Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; 6Huntsman Cancer Institute, University of Utah Comprehensive Cancer Center, Salt Lake City, UT; 7The University of Texas MD Anderson Cancer Center, Houston, TX; 8CRISPR Therapeutics, Boston, MA; 9Formerly CRISPR Therapeutics, Boston, MA

Presented at the SITC 37th Annual Meeting. Nov 10, 2022
Disclosures

• The COBALT™-RCC study of CTX130™ is sponsored by CRISPR Therapeutics

• Dr. Sumanta Pal is a Professor in the Department of Medical Oncology & Therapeutics Research and Co-director of the Kidney Cancer Program at City of Hope

• Dr. Pal received travel reimbursement from CRISPR Therapeutics and Ipsen
Overview

• Renal cell carcinoma (RCC) is one of the ten most common cancers, with an annual incidence of 50,000 in the US and 45,000 in the EU51-4
 – About 40% are primary refractory2-4

• Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype and is often unresponsive to available therapies, including radiation, chemotherapy, and immunotherapy
 – While localized RCC can often be treated with partial or radical nephrectomy, approximately 30% of ccRCC patients will develop metastases that require systemic therapy5,6

• CD70 is a ligand for CD27 with transient expression on activated lymphocytes and is highly expressed in ccRCC tumor samples7-10

• CTX130 is a first-in-class, CD70-targeting allogeneic CAR T therapy being investigated in patients with advanced (metastatic or unresectable) ccRCC

CAR, chimeric antigen receptor; EU5, European Union countries with the 5 largest economies: France, Germany, Italy, Spain, and the United Kingdom.

Presented at the SITC 37th Annual Meeting. Nov 10, 2022
Role of CD70 in Immune Response and Cancer

Physiological role of CD70\(^1,2\)
- Transient CD70 expression on activated lymphocytes as well as activated APCs (dendritic cells), and some B and NK cells
- In T cells, CD70 controls naïve and memory T-cell activation via interaction with CD27

Role of CD70 in cancer\(^1\)
- High levels of CD70 expression have been detected in approximately 82%-85% of ccRCC samples\(^3,4\)
- Possible immunosuppressive role due to T-cell exhaustion, apoptosis, or Treg expansion

References:

APC, antigen presenting cell; ccRCC, renal cell carcinoma; NK, natural killer; Treg, regulatory T cell.
CTX130

- CTX130 is an investigational allogeneic, CRISPR/Cas9 gene-edited, anti-CD70 CAR T cell therapy with targeted disruption of the TRAC, β2M, and CD70 loci
 - Using an AAV vector, an anti-CD70 CAR cassette is specifically inserted into the TRAC locus by homology-directed repair
- CTX130 is manufactured from T cells collected from a healthy donor, which are then selected and edited before expansion and cryopreservation for off-the-shelf availability

Presented at the SITC 37th Annual Meeting. Nov 10, 2022
Five million A498 cells were injected subcutaneously into the right flank of NOG (NOD.Cg-Prkdc^{scid}/Il2rg^{tm1Sug/JicTac}) mice. When mean tumor size reached an average size of approximately 150 mm3, mice were either left untreated (n=5) or injected intravenously with 8×10^6 CAR$^+$ CTX130 cells per mouse (n=5) or with 7.5×10^6 CAR$^+$ CD70$^+$ anti-CD70 CAR T cells (n=4) per mouse. Tumor volumes were measured twice weekly for the duration of the study. Each point represents the mean tumor volume ± standard error.

Efficacy of CTX130 vs CD70+ anti-CD70 CAR T Cells in a Subcutaneous A498 RCC Xenograft Model

Efficacy and Systemic Antitumor Activity of a Single Dose of CTX130 in an A498 RCC Xenograft Model
COBALT-RCC (NCT04438083) Clinical Trial Design

Phase 1, open-label, multicenter, international, single-arm study (NCT04438083) evaluating the safety and efficacy of CTX130, an investigational, allogeneic CAR T cell targeting CD70

Informed consent form

CTX130 infusion (D +1):

<table>
<thead>
<tr>
<th>DL1</th>
<th>DL2</th>
<th>DL3</th>
<th>DL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×10^7 cells</td>
<td>1×10^8 cells</td>
<td>3×10^8 cells</td>
<td>9×10^8 cells</td>
</tr>
</tbody>
</table>

Flu 30mg/m² + Cy 500mg/m² for 3 days (D −5, −4, −3)

Primary endpoint

- Part A (Dose Escalation): Incidence of adverse events defined as dose-limiting toxicities
- Part B (Cohort Expansion): Objective response rate per Response Evaluation Criteria In Solid Tumors (RECIST) v1.1

Secondary endpoints

- Best overall response
- Progression-free survival
- Overall survival

Key inclusion criteria

- Age ≥18 years and body weight ≥42 kg
- Unresectable or metastatic RCC with clear cell differentiation
- Prior exposure to both check point and VEGF inhibitor and documented progression after adequate exposure
- Karnofsky performance status (KPS) ≥80%
- Adequate renal, liver, cardiac, and pulmonary organ function

Key exclusion criteria

- Prior treatment with any anti-CD70 targeting agents
- Prior treatment with any CAR T cells or any other modified T or natural killer (NK) cells
- History of certain central nervous system (CNS), cardiac or pulmonary conditions
- Prior solid organ transplantation or bone marrow transplant

CAR, chimeric antigen receptor; Cy, cyclophosphamide; Flu, fludarabine; D, day; DL, dose level; RCC, renal cell carcinoma.

Presented at the SITC 37th Annual Meeting. Nov 10, 2022
Patient Demographics and Baseline Characteristics

Presented at the SITC 37th Annual Meeting. Nov 10, 2022

Data cutoff date: 02 May 2022

<table>
<thead>
<tr>
<th></th>
<th>DL1 3x10^7 N=3</th>
<th>DL2 1x10^8 N=3</th>
<th>DL3 3x10^8 N=4</th>
<th>DL4 9x10^8 N=4</th>
<th>Total N=14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, y (range)</td>
<td>59 (58-64)</td>
<td>60 (54-65)</td>
<td>64.5 (59-73)</td>
<td>70 (66-77)</td>
<td>64.5 (54-77)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>3 (100)</td>
<td>3 (100)</td>
<td>4 (100)</td>
<td>2 (50)</td>
<td>12 (85.7)</td>
</tr>
<tr>
<td>Stage IV at enrollment, n (%)</td>
<td>3 (100)</td>
<td>3 (100)</td>
<td>4 (100)</td>
<td>4 (100)</td>
<td>14 (100)</td>
</tr>
<tr>
<td>Metastatic disease, n (%)</td>
<td>3 (100)</td>
<td>3 (100)</td>
<td>4 (100)</td>
<td>4 (100)</td>
<td>14 (100)</td>
</tr>
<tr>
<td>Prior anticancer therapies, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic therapy</td>
<td>3 (100)</td>
<td>3 (100)</td>
<td>4 (100)</td>
<td>4 (100)</td>
<td>14 (100)</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>1 (33.3)</td>
<td>2 (66.7)</td>
<td>3 (75)</td>
<td>3 (75)</td>
<td>9 (64.3)</td>
</tr>
<tr>
<td>Surgery</td>
<td>3 (100)</td>
<td>3 (100)</td>
<td>3 (75)</td>
<td>4 (100)</td>
<td>13 (92.9)</td>
</tr>
<tr>
<td>IMDC risk category at screening, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intermediate</td>
<td>3 (100)</td>
<td>3 (100)</td>
<td>1 (25)</td>
<td>1 (25)</td>
<td>8 (57.1)</td>
</tr>
<tr>
<td>High</td>
<td>0</td>
<td>0</td>
<td>3 (75)</td>
<td>3 (75)</td>
<td>6 (42.9)</td>
</tr>
<tr>
<td>eGFR <60 mL/min/1.73m^2, n (%)</td>
<td>2 (66.7)</td>
<td>1 (33.3)</td>
<td>1 (25)</td>
<td>2 (50)</td>
<td>6 (42.9)</td>
</tr>
<tr>
<td>Median time from diagnosis, y (range)</td>
<td>3.4 (2.5-6.3)</td>
<td>2.7 (0.7-3.3)</td>
<td>5.1 (2.5-5.6)</td>
<td>10.5 (5.1-24.0)</td>
<td>4.9 (0.7-24.0)</td>
</tr>
<tr>
<td>SoD for target lesions, mm (range)</td>
<td>73 (12-141)</td>
<td>51 (45-122)</td>
<td>61 (47-135)</td>
<td>88 (40-135)</td>
<td>64 (12-141)</td>
</tr>
</tbody>
</table>

DL, dose level; eGFR, estimated glomerular filtration rate; IMDC, International Metastatic Renal Cell Carcinoma Database Consortium; SoD, sum of diameters.
CD70 Expression in ccRCC Clinical Samples

- CD70 expression was assessed by IHC in tumor samples
 - Median CD70 expression level (range, n=12): 100% (1-100)
 - Mean CD70 expression was >75%

IHC, immunohistochemistry; ccRCC, clear cell renal cell carcinoma.
Safety

Adverse Events of Interest, N (%)

<table>
<thead>
<tr>
<th></th>
<th>DL1 3x10⁷ N=3</th>
<th>DL2 1x10⁸ N=3</th>
<th>DL3 3x10⁸ N=4</th>
<th>DL4 9x10⁸ N=4</th>
<th>Total N=14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr 1-2</td>
<td>–</td>
<td>–</td>
<td>3 (75)</td>
<td>–</td>
<td>7 (50)</td>
</tr>
<tr>
<td>Gr ≥3</td>
<td>–</td>
<td>–</td>
<td>4 (100)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CRS</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>ICANS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GvHD</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Infections*</td>
<td>–</td>
<td>–</td>
<td>1 (33)</td>
<td>1 (25)</td>
<td>2 (14.3)</td>
</tr>
</tbody>
</table>

- 7 (50%) patients had Gr 1-2 CRS; no Gr ≥3 CRS events. 3 patients had SAEs related to CTX130; all were CRS events
 - Median time to CRS onset was 1 day with a median duration of 2 days
- No ICANS or GvHD
- 3 patients had SAEs of infections; all unrelated to CTX130, including Gr 5 pneumonia with Gr 4 dyspnea resulting in death
- No instances of TLS, infusion reactions, HLH, or secondary malignancies
- Acceptable safety profile across all DLs and no DLTs

*Includes COVID-19, pneumonia, enterocolitis, and urinary tract infections.

CRS, cytokine release syndrome; DLT, dose-limiting toxicity; Gr, grade; GvHD, graft versus host disease; HLH, hemophagocytic lymphohistiocytosis; ICANS, immune effector cell associated neurotoxicity syndrome; LDC, lymphodepleting chemotherapy; SAE, serious adverse event; TLS, tumor lysis syndrome.
Efficacy

<table>
<thead>
<tr>
<th>Best overall response, n (%)</th>
<th>DL1 3x10^7 N=3</th>
<th>DL2 1x10^8 N=3</th>
<th>DL3 3x10^8 N=4</th>
<th>DL4 9x10^8 N=3</th>
<th>Total N=13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Response Rate</td>
<td>1 (33)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Stable Disease</td>
<td>2 (67)</td>
<td>2 (67)</td>
<td>2 (50)</td>
<td>3 (100)</td>
<td>9 (69)</td>
</tr>
<tr>
<td>Disease Control Rate (DCR = CR + PR + SD)</td>
<td>3 (100)</td>
<td>2 (67)</td>
<td>2 (50)</td>
<td>3 (100)</td>
<td>10 (77)</td>
</tr>
</tbody>
</table>

- One patient achieved PR, which then deepened to CR by month 3; he has maintained CR through his most recent visit at month 18
- 4 patients (31%) were in SD at 4 months
- Typical PK seen with peak time to expansion at a median of D10 and peak concentration of ~3500 copies/μg
- Encouraging results underscore the potential of further increasing potency

CR, complete response; DCR, disease control rate; D, day; DL, dose level; ORR, overall response rate; PK, pharmacokinetics; PR, partial response; SD, stable disease.

Data cutoff date: 02 May 2022

Presented at the SITC 37th Annual Meeting. Nov 10, 2022
Efficacy (continued)

Data cutoff date: 02 May 2022

DL, dose level.

Subjects

Time From 1st CTX130 Infusion (months)

- Disease progression
- Stable disease
- Partial response
- Complete response
- Ongoing
- Reinfusion
- Death
- Response assessment
- Anti-cancer therapy
- Palliative radiotherapy

Presented at the SITC 37th Annual Meeting. Nov 10, 2022
Subject Overview

Patient profile
- 64-year-old male with clear cell RCC diagnosed in 2017
- 1 prior line of therapy with cabozantinib and atezolizumab
- After PR to previous therapy, patient relapsed with lesions in the lung and pleura
- CD70+ expression: 100% at baseline

Efficacy
- PR at D42 after a single infusion of 3x10^7 CAR+ T cells
- CR at M3 and remains in CR at M18

Safety
- Only Gr 1-2 adverse events
- No AEs considered related to CTX130

Response

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td>Deepening of response over time</td>
<td>![Images]</td>
</tr>
<tr>
<td>Day 42</td>
<td></td>
<td>![Images]</td>
</tr>
<tr>
<td>Month 18</td>
<td></td>
<td>![Images]</td>
</tr>
</tbody>
</table>

Data cutoff date: 02 May 2022

AE, adverse event; CAR, chimeric antigen receptor; CR, complete response; D, day; DL, dose level; Gr, grade; M, month; PR, partial response.
Conclusions

- This first-in-human clinical trial exploring CD70 CAR T-cell therapy in ccRCC showed a tolerant safety profile with no unexpected on-target off-tumor toxicities and encouraging antitumor activity.

- To our knowledge, this durable complete response (CR) is the first to be achieved with allogeneic CAR T cell therapy in patients with R/R solid tumors.

- CTX130 achieved a 77% DCR in a heavily pretreated RCC patient population. The longest duration of SD achieved was observed for 7.8 months and ongoing. During periods of SD, patients did not receive any other anticancer therapies.

- CTX130 represents a proof-of-concept for further exploration of CD70-targeted CAR T cells in ccRCC and other CD70+ malignancies.

- CTX130 is being developed with second-generation edits (CTX131™) containing disruption of regnase-1 and TGFβR2 which when edited together, increase potency at least 10X in preclinical models. Clinical studies are planned for 2023.
Acknowledgments

• Thank you to all the patients, families and investigators involved with the COBALT-RCC Study
• This study was sponsored by CRISPR Therapeutics