CTX130 allogeneic CRISPR-Cas9-engineered chimeric antigen receptor (CAR) T cells in patients with advanced clear cell renal cell carcinoma: results from the phase 1 COBALT-RCC study

Sumanta K Pal, MD¹, Ben Tran, MBBS, FRACP², John B. Haanen, MD, PhD³, Michael Hurwitz, MD, PhD⁴, Adrian Sacher, MD⁵, Neeraj Argawal, MD⁶, Nizar Tannir, MD⁷, L. Elizabeth Budde, MD¹, Simon Harrison MBBS, PhD, FRACP², Sebastian Klobuch, MD³, Sagar S. Patel, MD⁶, Mary-Lee Dequeant, PhD⁶, Verena Karsten, PhD⁶, Kaitlyn Cohen, MS⁶, Ellen B. Gurary, PhD⁶, Henia Dar, PhD⁶, Anna Ma, MS⁶, Anjali Sharma, MD⁶, Samer A. Srour, MD⁷

¹City of Hope Comprehensive Cancer Center, Duarte, CA; ²Peter MacCallum Cancer Centre, Melbourne, Australia; ³Netherlands Cancer Institute, Amsterdam, Netherlands; ⁴Yale School of Medicine, New Haven, CT; ⁵Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; ⁶Huntsman Cancer Institute, University of Utah Comprehensive Cancer Center, Salt Lake City, UT; ⁷The University of Texas MD Anderson Cancer Center, Houston, TX; ⁸CRISPR Therapeutics, Boston, MA; ⁹Formerly CRISPR Therapeutics, Boston, MA

Disclosures

- The COBALT™-RCC study of CTX130TM is sponsored by CRISPR Therapeutics
- Dr. Sumanta Pal is a Professor in the Department of Medical Oncology & Therapeutics Research and Codirector of the Kidney Cancer Program at City of Hope
- Dr. Pal received travel reimbursement from CRISPR Therapeutics and Ipsen

Overview

- Renal cell carcinoma (RCC) is one of the ten most common cancers, with an annual incidence of 50,000 in the EU5¹⁻⁴
 - About 40% are primary refractory²⁻⁴
- Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype and is often unresponsive to available therapies, including radiation, chemotherapy, and immunotherapy
 - While localized RCC can often be treated with partial or radical nephrectomy, approximately 30% of ccRCC patients will develop metastases that require systemic therapy^{5,6}
- CD70 is a ligand for CD27 with transient expression on activated lymphocytes and is highly expressed in ccRCC tumor samples⁷⁻¹⁰
- CTX130 is a first-in-class, CD70-targeting allogeneic CAR T therapy being investigated in patients with advanced (metastatic or unresectable) ccRCC

Role of CD70 in Immune Response and Cancer

Physiological role of CD70^{1,2}

- Transient CD70 expression on activated lymphocytes as well as activated APCs (dendritic cells), and some B and NK cells
- In T cells, CD70 controls naïve and memory T-cell activation via interaction with CD27

APC, antigen presenting cell; ccRCC, renal cell carcinoma; NK, natural killer; Treg, regulatory T cell.

References: 1. Wajant H. *Expert Opin Ther Targets*. 2016;20:959-973. 2. Buchan SL, et al. *Blood*. 2018;131:39-48. 3. Karnik S, et al. AACR 2020. Poster P6595. 4. Benhamouda H,et al. *Clin Cancer Res*. Sep 6:CCR-22-0905. doi: 10.1158/1078-0432.CCR-22-0905. Online ahead of print.

Role of CD70 in cancer¹

- High levels of CD70 expression have been detected in approximately 82%-85% of ccRCC samples³⁻⁴
- Possible immunosuppressive role due to T-cell exhaustion, apoptosis, or Treg expansion

CTX130

- CTX130 is an investigational allogeneic, CRISPR/Cas9 gene-edited, anti-CD70 CAR T cell therapy with targeted disruption of the TRAC, β2M, and CD70 loci
 - Using an AAV vector, an anti-CD70 CAR cassette is specifically inserted into the TRAC locus by homologydirected repair
- CTX130 is manufactured from T cells collected from a healthy donor, which are then selected and edited before expansion and cryopreservation for off-the-shelf availability

CTX130 Construct

AAV, adeno-associated virus; β2M, β2-microglobulin; CAR, chimeric antigen receptor; MHC, major histocompatibility complex; TCR, T-cell receptor; TRAC, T-cell receptor alpha constant.

Reference: Dequeant M-L, et al. CD70 knockout: A novel approach to augment CAR-T cell function. Poster presented at American Association for Cancer Research 2021. April 10-15 and May 17-21, 2021.

CTX130 Demonstrated Encouraging Efficacy in a Renal Cell Carcinoma Xenograft Model

Efficacy of CTX130 vs CD70+ anti-CD70 CAR T Cells in a Subcutaneous A498 RCC Xenograft Model

Five million A498 cells were injected subcutaneously into the right flank of NOG (NOD.Cg-Prkdc scid II2rg tm1Sug/JicTac) mice. When mean tumor size reached an average size of approximately 150 mm³, mice were either left untreated (n=5) or injected intravenously with 8 x 10 6 CAR+ CTX130 cells per mouse (n=5) or with 7.5 x 10 6 CAR+ CD70+ anti-CD70 CAR T cells (n=4) per mouse. Tumor volumes were measured twice weekly for the duration of the study. Each point represents the mean tumor volume \pm standard error.

Efficacy and Systemic Antitumor Activity of a Single Dose of CTX130 in an A498 RCC Xenograft Model

COBALT-RCC (NCT04438083) Clinical Trial Design

Phase 1, open-label, multicenter, international, single-arm study (NCT04438083) evaluating the safety and efficacy of CTX130, an investigational, allogeneic CAR T cell targeting CD70

Flu $30 \text{mg/m}^2 + \text{Cy } 500 \text{mg/m}^2 \text{ for } 3 \text{ days } (D -5, -4, -3)$

Key inclusion criteria

- Age ≥18 years and body weight ≥42 kg
- Unresectable or metastatic RCC with clear cell differentiation
- Prior exposure to both check point and VEGF inhibitor and documented progression after adequate exposure
- Karnofsky performance status (KPS) ≥80%
- Adequate renal, liver, cardiac, and pulmonary organ function

Key exclusion criteria

- Prior treatment with any anti-CD70 targeting agents
- Prior treatment with any CAR T cells or any other modified T or natural killer (NK) cells
- History of certain central nervous system (CNS), cardiac or pulmonary conditions
- Prior solid organ transplantation or bone marrow transplant

Primary endpoint

- Part A (Dose Escalation): Incidence of adverse events defined as dose-limiting toxicities
- Part B (Cohort Expansion): Objective response rate per Response Evaluation Criteria In Solid Tumors (RECIST) v1.1

Secondary endpoints

- Best overall response
- Progression-free survival
- Overall survival

Patient Demographics and Baseline Characteristics

Data cutoff date: 02 May 2022

	DL1 3x10 ⁷ N=3	DL2 1x10 ⁸ N=3	DL3 3x10 ⁸ N=4	DL4 9x10 ⁸ N=4	Total N=14
Median age, y (range)	59 (58-64)	60 (54-65)	64.5 (59-73)	70 (66-77)	64.5 (54-77)
Male, n (%)	3 (100)	3 (100)	4 (100)	2 (50)	12 (85.7)
Stage IV at enrollment, n (%)	3 (100)	3 (100)	4 (100)	4 (100)	14 (100)
Metastatic disease, n (%)	3 (100)	3 (100)	4 (100)	4 (100)	14 (100)
Prior anticancer therapies, n (%) Systemic therapy Radiotherapy Surgery	3 (100) 1 (33.3) 3 (100)	3 (100) 2 (66.7) 3 (100)	4 (100) 3 (75) 3 (75)	4 (100) 3 (75) 4 (100)	14 (100) 9 (64.3) 13 (92.9)
IMDC risk category at screening, n (%) Favorable Intermediate High	0 3 (100) 0	0 3 (100) 0	0 1 (25) 3 (75)	0 1 (25) 3 (75)	0 8 (57.1) 6 (42.9)
eGFR <60 mL/min/1.73m², n (%)	2 (66.7)	1 (33.3)	1 (25)	2 (50)	6 (42.9)
Median time from diagnosis, y (range)	3.4 (2.5-6.3)	2.7 (0.7-3.3)	5.1 (2.5-5.6)	10.5 (5.1-24.0)	4.9 (0.7-24.0)
SoD for target lesions, mm (range)	73 (12-141)	51 (45-122)	61 (47-135)	88 (40-135)	64 (12-141)

CD70 Expression in ccRCC Clinical Samples

- CD70 expression was assessed by IHC in tumor samples
 - Median CD70 expression level (range, n=12):
 100% (1-100)
 - Mean CD70 expression was >75%

Safety

Data cutoff date: 02 May 2022

Adverse Events of Interest, N (%)

	DL1 3x10 ⁷ N=3		DL2 1x10 ⁸ N=3		DL3 3x10 ⁸ N=4		DL4 9x10 ⁸ N=4		Total N=14	
	Gr 1-2	Gr≥3	Gr 1-2	Gr ≥3	Gr 1-2	Gr ≥3	Gr 1-2	Gr ≥3	Gr 1-2	Gr ≥3
CRS	-	-	-	-	3 (75)	-	4 (100)	-	7 (50)	-
ICANS	_	-	_	-	_	_	-	_	-	-
GvHD	-	-	-	-	-	-	-	_	-	-
Infections*	_	_	_	1 (33)	1 (25)	1 (25)	1 (25)	_	2 (14.3)	2 (14.3)

- 7 (50%) patients had Gr 1-2 CRS; no Gr ≥3 CRS events. 3 patients had SAEs related to CTX130; all were CRS events
 - Median time to CRS onset was 1 day with a median duration of 2 days
- No ICANS or GvHD
- 3 patients had SAEs of infections; all unrelated to CTX130, including Gr 5 pneumonia with Gr 4 dyspnea resulting in death
- No instances of TLS, infusion reactions, HLH, or secondary malignancies
- Acceptable safety profile across all DLs and no DLTs

All events listed in table are treatment-emergent adverse events.

^{*}Includes COVID-19, pneumonia, enterocolitis, and urinary tract infections.

Efficacy

Data cutoff date: 02 May 2022

Best overall response, n (%)

	DL1 3x10 ⁷ N=3	DL2 1x10 ⁸ N=3	DL3 3x10 ⁸ N=4	DL4 9x10 ⁸ N=3	Total N=13
Overall Response Rate	1 (33)	0	0	0	1 (8)
Stable Disease	2 (67)	2 (67)	2 (50)	3 (100)	9 (69)
Disease Control Rate (DCR = CR + PR + SD)	3 (100)	2 (67)	2 (50)	3 (100)	10 (77)

- One patient achieved PR, which then deepened to CR by month 3; he has maintained CR through his most recent visit at month 18
- 4 patients (31%) were in SD at 4 months
- Typical PK seen with peak time to expansion at a median of D10 and peak concentration of ~3500 copies/μg
- Encouraging results underscore the potential of further increasing potency

Efficacy (continued)

Data cutoff date: 02 May 2022

Case Study

Complete Response with Single-Infusion of CTX130

Subject Overview

Patient profile

- 64-year-old male with clear cell RCC diagnosed in 2017
- 1 prior line of therapy with cabozantinib and atezolizumab
- After PR to previous therapy, patient relapsed with lesions in the lung and pleura
- CD70+ expression: 100% at baseline

Efficacy

- PR at D42 after a single infusion of 3x10⁷ CAR+ T cells
- CR at M3 and remains in CR at M18

Safety

- Only Gr 1-2 adverse events
- No AEs considered related to CTX130.

Response

Screening

Day 42

Month 18

Deepening of response over time

Data cutoff date: 02 May 2022

Conclusions

- This first-in-human clinical trial exploring CD70 CAR T-cell therapy in ccRCC showed a tolerable safety profile
 with no unexpected on-target off-tumor toxicities and encouraging antitumor activity
- To our knowledge, this durable complete response (CR) is the first to be achieved with allogeneic CAR T cell therapy in patients with R/R solid tumors
- CTX130 achieved a 77% DCR in a heavily pretreated RCC patient population. The longest duration of SD achieved was observed for 7.8 months and ongoing. During periods of SD, patients did not receive any other anticancer therapies
- CTX130 represents a proof-of-concept for further exploration of CD70-targeted CAR T cells in ccRCC and other CD70+ malignancies
- CTX130 is being developed with second-generation edits (CTX131TM) containing disruption of regnase-1 and TGF β R2 which when edited together, increase potency at least 10X in preclinical models. Clinical studies are planned for 2023

Acknowledgments

- Thank you to all the patients, families and investigators involved with the COBALT-RCC Study
- This study was sponsored by CRISPR Therapeutics

COBALT-RCC (NCT04438083) Study Sites

