

CRISPR-editing of hESCs allows for production of immune evasive cells capable of differentiation to pancreatic progenitors for future type 1 diabetes therapy

Valentin Sluch, Ph.D.

September 17, 2019

Cell Therapy for T1D Has Been Successful

Human proof of principle – Edmonton protocol:

- Currently ~1500 patients successfully transplanted with human cadaveric islets since 2000
- Insulin-independence commonly achieved for 5 years or longer; daily glucose excursions eliminated

Two main challenges:

- 1. Very limited **supply** of suitable islets
- 2. Chronic immunosuppression is required

Almehthel et al., US Endocrinology, 2015 Moassesfar et al., Am J Transplant., 2016 Schuetz and Markmann, Curr Transplant Rep., 2016 Latres et al., Cell Metabolism, 2019

Artificial pancreas

Islet transplantation

Glucose excursions eliminated after transplant

Solving the Supply Issue – Stem Cell-Derived Pancreatic Progenitors

VIACYTE Regenerating Health"

CRISPR THERAPEUTICS

Therapy currently in clinical trials and requires immunosuppression

CRISPR Engineering a Universal Donor Cell Line

CRISPR

CRISPR-Cas 9 allows for precise gene editing

Stem Cell Editing is Successful

B2M Guide RNA Screen

B2M-B guide produced ontarget indels in stem cells with up to **90% efficiency** with **no detected off-targets**

Clones Express PD-L1, Lack MHC-I and are Pluripotent

WT = red B2M KO/PD-L1 KI = green

Dotted line = no IFNγ Solid line = plus IFNγ

Clones have normal karyotype

© 2019 CRISPR Therapeutics

Gene Editing Does Not Affect Differentiation to PEC

PD-L1 Expression is Retained with Maturation

hESC

Stage 6

Gene Edited Cells Do Not Activate T-Cells

WT-PEC activated T-cells B2M KO-PEC did not PD-L1 KI + B2M KO-PEC did not

Summary and Future Directions

CRISPR

- Multiple B2M KO PD-L1 KI CyT49 hESC clonal lines have been generated
- These lines do not express MHC-I and still differentiate to PEC
- PD-L1 expression is retained with continued differentiation to immature β-cells
- Preliminary *in vitro* data suggests edited cells are immune evasive

In vivo testing of human insulin production:

• Ongoing *in vivo* transplantation study in nude rats to test glucose-stimulated insulin secretion (GSIS) from edited PEC

In vivo testing of edited PEC for immune system evasion:

 Humanized mouse models have been transplanted with edited PEC and human donor PBMCs that are allogeneic to the PEC transplant

Acknowledgements

CRISPR Tx Team

Alireza Rezania Danielle Swain William Whipple Meichen Liao Paul Tetteh Hanspeter Waldner Henrik Sperber Tony Ho

CRISPR Therapeutics www.crisprtx.com ViaCyte Team

Anindita Bhoumik Alan Agulnick Kevin D'Amour

