Efficacy and Safety of a Single Dose of Exagamglogene Autotemcel for Transfusion-Dependent β-Thalassemia and Severe Sickle Cell Disease

Franco Locatelli,1 Haydar Frangoul,2 Selim Corbacioglu,3 Josu de la Fuente,4 Donna Wall,5 Maria Domenica Cappellini,6 Mariane de Montalembert,7 Antonis Kattamis,8 Stephan Lobitz,9 Damiano Rondelli,10 Sujit Sheth,11 Martin Steinberg,12 Mark C. Walters,13 Yael Bobruff,14 Chris Simard,14 Yang Song,14 Lanju Zhang,14 Anjali Sharma,15 Suzan Imren,14 Bill Hobbs,14 Stephan Grupp16 on behalf of the CLIMB THAL-111 and CLIMB SCD-121 teams

1Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Italy; 2Sarah Cannon Center for Blood Cancer at The Children’s Hospital at TriStar Centennial, Nashville, TN, USA; 3University of Regensburg, Regensburg, Germany; 4Imperial College Healthcare NHS Trust, St Mary’s Hospital, London, UK; 5The Hospital for Sick Children/University of Toronto, Toronto, Canada; 6University of Milan, Milan, Italy; 7Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris, Paris, France; 8University of Athens, Athens, Greece; 9Gemeinschaftsklinikum Mittelrhein, Koblenz, Germany; 10University of Illinois at Chicago, Chicago, IL, USA; 11Joan and Sanford I Weill Medical College of Cornell University, New York, NY, USA; 12Boston University School of Medicine, Boston, MA, USA; 13UCSF Benioff Children’s Hospital, Oakland, CA, USA; 14Vertex Pharmaceuticals Incorporated, Boston, MA, USA; 15CRISPR Therapeutics, Cambridge, MA, USA; 16Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

27th Congress of the European Hematology Association (EHA) 2022; June 9–17, 2022

* Exagamglogene autotemcel (exa-cel) is formerly known as CTX001
<table>
<thead>
<tr>
<th>Name of Company</th>
<th>Research Support</th>
<th>Employee</th>
<th>Consultant</th>
<th>Stockholder</th>
<th>Speaker’s Bureau</th>
<th>Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miltenyi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellicum</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Amgen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Jazz Pharm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Medac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neovii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Novartis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sanofi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SOBI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BluebirdBio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Exa-cel Is a Cell Therapy That Uses Non-Viral, *Ex Vivo* CRISPR/Cas9-Mediated Editing of *BCL11A* to Increase HbF Levels\(^1\)

- Naturally occurring genetic polymorphisms in *BCL11A* are associated with elevated HbF and decreased severity of TDT and SCD\(^2-4\)
- *BCL11A* suppresses expression of γ-globin and thus HbF
- Editing of *Bcl11a* reactivates γ-globin expression and formation of HbF (α2γ2) in mouse models\(^4\)
- Exa-cel is produced using non-viral, *ex vivo* editing of the erythroid-specific enhancer region of *BCL11A* in CD34\(^+\) HSPCs and reduces erythroid-specific expression of BCL11A
- Infusion of exa-cel leads to an increase in HbF levels in erythroid cells *in vivo*

\(\text{BCL11A, B-cell lymphoma/leukemia 11A; CRISPR, clustered regularly interspaced short palindromic repeats; DNA, deoxyribonucleic acid; HbF, fetal hemoglobin; HSPC, hematopoietic stem and progenitor cell; RNA, ribonucleic acid; SCD, sickle cell disease; TDT, transfusion dependent β-thalassemia.}\)

CLIMB THAL-111 and CLIMB SCD-121 Pivotal Trials of Exa-cel in Patients With TDT and Severe SCD Are Ongoing

<table>
<thead>
<tr>
<th>Design</th>
<th>International, multicenter, open-label, single-arm pivotal study of exa-cel (NCT03655678)</th>
<th>International, multicenter, open-label, single-arm pivotal study of exa-cel (NCT03745287)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Inclusion Criteria</td>
<td>Twelve to 35 years of age with TDT, including β^0/β^0 genotypes, defined as a history of ≥ 100 mL/kg/year or ≥ 10 units/year of pRBC transfusions in the previous 2 years</td>
<td>Twelve to 35 years of age with severe SCD and a history of ≥ 2 VOCs per year in the previous 2 years</td>
</tr>
<tr>
<td>Primary Endpoint</td>
<td>Primary efficacy endpoint: Proportion of patients achieving a maintained weighted average Hb ≥ 9 g/dL without RBC transfusions for at least 12 consecutive months after exa-cel infusion</td>
<td>Primary efficacy endpoint: Proportion of patients who have not experienced any severe VOC for at least 12 consecutive months after exa-cel infusion</td>
</tr>
<tr>
<td>Clinical Assessments</td>
<td>Engraftment, total Hb, HbF, $BCL11A$ edited alleles, transfusions, and AEs</td>
<td>Engraftment, total Hb, HbF, $BCL11A$ edited alleles, transfusions, VOCs, and AEs</td>
</tr>
</tbody>
</table>

Data presented on all patients infused with exa-cel who have TDT ($n = 44$) or severe SCD ($n = 31$) as of February 2022 ($N = 75$)

AE, adverse event; $BCL11A$, B-cell lymphoma/leukemia 11A; Hb, hemoglobin; HbF, fetal hemoglobin; pRBC, packed red blood cell; RBC, red blood cell; SCD, sickle cell disease; TDT, transfusion dependent β-thalassemia; VOC, vaso-occlusive crisis.
Baseline Demographics and Clinical Characteristics of the 44 Patients With TDT Infused With Exa-cel

<table>
<thead>
<tr>
<th>Exa-cel (TDT)</th>
<th>n = 44</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sex, n (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>21 (47.7)</td>
</tr>
<tr>
<td>Female</td>
<td>23 (52.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotype, n (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β^0/β^0</td>
<td>14 (31.8)</td>
</tr>
<tr>
<td>β^0/β^0-like (β^0/IVS-I-110; IVS-I-110/IVS-I-110)</td>
<td>12 (27.3)</td>
</tr>
<tr>
<td>Non-β^0/β^0-like</td>
<td>18 (40.9)</td>
</tr>
</tbody>
</table>

| Age at baseline, years, mean (min, max) | 21.3 (12, 35) |

| Historical RBC transfusions per year,a units, mean (min, max) | 36.0 (15, 71) |

RBC, red blood cell; TDT, transfusion dependent β-thalassemia.

*aAnnualized over 2 years before signing of the informed consent form or the latest rescreening.
Baseline Demographics and Clinical Characteristics of the 31 Patients With SCD Infused With Exa-cel

<table>
<thead>
<tr>
<th>Exa-cel (SCD)</th>
<th>n = 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>16 (51.6)</td>
</tr>
<tr>
<td>Female</td>
<td>15 (48.4)</td>
</tr>
<tr>
<td>Genotype, n (%)</td>
<td></td>
</tr>
<tr>
<td>β^s/β^s</td>
<td>29 (93.5)</td>
</tr>
<tr>
<td>β^s/β^0</td>
<td>2 (6.5)</td>
</tr>
<tr>
<td>Age at baseline, years, mean (min, max)</td>
<td>22.5 (12, 34)</td>
</tr>
<tr>
<td>Historical VOC episodes per year,(^*) mean (min, max)</td>
<td>3.9 (2.0, 9.5)</td>
</tr>
</tbody>
</table>

SCD, sickle cell disease; VOC, vaso-occlusive crisis.

*Annualized rate during the 2 years before signing of the informed consent form or the latest rescreening.
All Patients Engrafted Neutrophils and Platelets After Exa-cel Infusion

<table>
<thead>
<tr>
<th></th>
<th>Exa-cel (TDT)</th>
<th>Exa-cel (SCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 44</td>
<td>n = 31</td>
</tr>
<tr>
<td>Drug product cell dose,(^a) median (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD34(^+) cells × 10(^6)/kg</td>
<td>7.5 (3.0, 19.7)</td>
<td>4.0 (2.9, 14.4)</td>
</tr>
<tr>
<td>Neutrophil engraftment,(^b) median (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Day(^c)</td>
<td>29.0 (12, 56)</td>
<td>27.0 (15, 38)</td>
</tr>
<tr>
<td>Platelet engraftment,(^d) median (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Day(^c)</td>
<td>43.5 (20, 213)</td>
<td>32.0 (23, 74)</td>
</tr>
<tr>
<td>Duration of follow-up, median (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Months(^c)</td>
<td>11.9 (1.2, 37.2)</td>
<td>10.2 (2.0, 32.3)</td>
</tr>
</tbody>
</table>

SCD, sickle cell disease; **TDT**, transfusion dependent β-thalassemia.

\(^a\)Across multiple drug product lots per patient; \(^b\)Defined as the first day of 3 consecutive measurements of absolute neutrophil count ≥500 cells/µL on 3 different days; \(^c\)Defined as day after exa-cel infusion; \(^d\)Defined as the first day of 3 consecutive measurements of unsupported (no platelet transfusion in last 7 days) platelet count ≥20,000/µL on 3 different days after exa-cel infusion (TDT) and as the first day of 3 consecutive measurements of unsupported (no platelet transfusions for last 7 days) platelet count ≥50,000/µL on 3 different days after exa-cel infusion (SCD).
Forty-Two of 44 Patients With TDT Treated With Exa-cel Are Transfusion-Free

- Time (months) of post-transplant RBC transfusion support is indicated by the light blue bar and time (months) since last transfusion is indicated by the dark blue bar.
- 42 of 44 patients stopped RBC transfusions (duration from 0.8 to 36.2 months).
- Two patients had not yet stopped transfusions but have 75% and 89% reductions in transfusion volume.

Hb, hemoglobin; RBC, red blood cell; TDT, transfusion-dependent β-thalassemia.

Each row in the figure on the right represents an individual patient.

*Number of transfusion units annualized over 2 years; *Received RBC transfusions at or after data cut; *Patient stopped transfusions after data cut; *Patients are evaluable for elimination of transfusions starting 60 days after their last transfusion.
All Patients With SCD Treated With Exa-cel are VOC-Free

- Time (months) since exa-cel infusion is indicated by the dark bar.
- 31 of 31 patients were VOC-free after exa-cel infusion (duration from 2.0 to 32.3 months)
Patients With TDT Had Early Increases in HbF That Drive Increases in Total Hb Above the Transfusion Threshold

Mean total Hb concentrations are shown directly above bars.

BL, baseline; Hb, hemoglobin; HbA, adult hemoglobin; HbA2, hemoglobin, alpha 2; HbE, hemoglobin E; HbF, fetal hemoglobin; TDT, transfusion-dependent β-thalassemia.

Hb adducts and other variants.

Mean total Hb concentrations are shown directly above bars.

*Hb adducts and other variants.
Patients With SCD Had Clinically Meaningful Increases in HbF (>20%) That Occurred Early and Were Sustained Over Time

Bars show mean Hb (g/dL). Labels indicate mean proportion of HbS and HbF as a percentage of total Hb. Mean total Hb concentrations are shown directly above bars.

BL, baseline; Hb, hemoglobin; HbA, adult hemoglobin; HbA2, hemoglobin alpha 2; HbE, hemoglobin E; HbF, fetal hemoglobin; HbS, sickle hemoglobin; SCD, sickle cell disease.

*Hb adducts and other variants.
Pancellular Distribution of HbF Is Maintained Over Time

Figures show mean (SE)
BL, baseline; F-cells, HbF-containing cells; HbF, fetal hemoglobin; SCD, sickle cell disease.
Durable *BCL11A* Editing Achieved in Bone Marrow (CD34+ Cells) and Peripheral Blood (Nucleated Cells)

Bone marrow allele editing figures include patients who have at least 12 months of follow-up whereas the blood allele editing figures include all patients.

BCL11A, B-cell lymphoma/leukemia 11A; BL, baseline; SCD, sickle cell disease.
Exa-cel Safety Profile Is Consistent With That of Busulfan Myeloablation and Autologous HSCT

Post-Exa-cel AE Overview

<table>
<thead>
<tr>
<th></th>
<th>TDT (n = 44)</th>
<th>SCD (n = 31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient-time exposure, Patient-months</td>
<td>520.2</td>
<td>288.6</td>
</tr>
<tr>
<td>Patients with any AEs, n (%)</td>
<td>44 (100.0)</td>
<td>31 (100.0)</td>
</tr>
<tr>
<td>Patients with AEs related to exa-cel, n (%)</td>
<td>12 (27.3)</td>
<td>9 (29.0)</td>
</tr>
<tr>
<td>Patients with AEs related to busulfan, n (%)</td>
<td>43 (97.7)</td>
<td>31 (100.0)</td>
</tr>
<tr>
<td>Patients with AEs Grade 3/4, n (%)</td>
<td>38 (86.4)</td>
<td>31 (100.0)</td>
</tr>
<tr>
<td>Patients with SAEs, n (%)</td>
<td>15 (34.1)</td>
<td>10 (32.3)</td>
</tr>
<tr>
<td>Patients with SAEs related to exa-cel, n (%)</td>
<td>2 (4.5)</td>
<td>0</td>
</tr>
<tr>
<td>Patients with AEs leading to death, n (%)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

AE, adverse event; HSCT, hematopoietic stem cell transplantation; SAE, serious adverse event; SCD, sickle cell disease; TDT, transfusion-dependent β-thalassemia.

*aIncludes related and possibly related AEs.
Two Patients With TDT and No Patients With SCD Had Exa-cel Related SAEs

• One patient with TDT had 3 SAEs related to exa-cel of hemophagocytic lymphohistiocytosis (HLH; macrophage activation syndrome), acute respiratory distress syndrome, and headache, and 1 SAE of idiopathic pneumonia syndrome related to both exa-cel and busulfan
 – All began peri-engraftment and occurred in the context of HLH. Events fully resolved with steroid and immunosuppressant treatment
 – HLH is a systemic hyperinflammatory non-infectious syndrome that has been reported after autologous HSCT

• One patient with TDT had SAEs related to both exa-cel and busulfan of delayed neutrophil engraftment and thrombocytopenia
 – Both SAEs resolved. Neutrophil engraftment was achieved on Day 56 without use of backup cells
 – All other patients in both exa-cel trials achieved neutrophil engraftment within 43 days of exa-cel infusion

• No patients with SCD had an SAE considered related or possibly related to exa-cel

HLH, hemophagocytic lymphohistiocytosis; HSCT, hematopoietic stem cell transplant; SAE, serious adverse event; SCD, sickle cell disease; TDT, transfusion-dependent β-thalassemia.
Conclusions

- Data from 75 patients with TDT and severe SCD shows a single dose of exa-cel leads to early increases in HbF and total Hb that are durable up to 3 years

- 42 of 44 patients with TDT stopped RBC transfusions and all 31 patients with severe SCD are free of VOCs

- Patients with ≥1 year of follow up have stable proportions of BCL11A edited alleles in bone marrow and peripheral blood, indicating successful and durable editing of long-term HSCs

- Safety profile of exa-cel is consistent with that of busulfan myeloablative conditioning and autologous hematopoietic stem cell transplantation

- Exa-cel has the potential to be the first CRISPR/Cas9-based therapy to provide a functional cure for patients with TDT and severe SCD

Treatment with exa-cel is associated with early, consistent, and durable increases in HbF levels leading to elimination of transfusions in almost all patients with TDT and elimination of VOCs in all patients with SCD.

Hb: hemoglobin; HbF: fetal hemoglobin; HSC: hematopoietic stem cell; RBC: red blood cell; SCD: sickle cell disease; TDT, transfusion-dependent β-thalassemia; VOCs: vaso-occlusive crises.
Acknowledgments

Thank you to study participants and their families, as well as sites, investigators, nurses, and the entire exa-cel team

The authors acknowledge the site investigators for CLIMB THAL-111 and CLIMB SCD-121 trials

Mattia Algeri | Ospedale Pediatrico Bambino Gesù
Monica Bhatia | Columbia University Medical Center
Ben Carpenter | University College London
Marina Cavazzana | Hospital Necker
Selim Corbacioglu | Children’s Hospital Regensburg
Josu de la Fuente | Imperial College Healthcare/Hammersmith Hospital
Laurence Dedeken | Hospital Universitaire des Enfants Reine Fabiola
Alina Ferster | Hospital Universitaire des Enfants Reine Fabiola
Haydar Frangoul | Sarah Cannon Research Institute/Children's Hospital at TriStar Centennial
Stephan Grupp | Children’s Hospital of Philadelphia
Janet Kwiatkowski | Children’s Hospital of Philadelphia
Peter Lang | Tubingen University Hospital
Amanda Li | BC Children's Hospital
Robert Liem | Lurie Children’s Hospital
Franco Locatelli | Ospedale Pediatrico Bambino Gesù
Markus Mapara | Columbia University Medical Center
Roland Meisel | Dusseldorf University Hospital
Lyndsay Molinari | Methodist Children's Hospital
Damiano Rondelli | University of Illinois
Ami Shah | Lucile Packard Children's Hospital Stanford
Akshay Sharma | St. Jude Children's Hospital
Paul Telfer | Barts Health NHS Trust
Donna Wall | Hospital for Sick Children (SickKids)

Medical writing support and editorial coordination was provided by Nathan Blow, PhD who is an employee of Vertex Pharmaceuticals Incorporated and may hold stock and/or stock options at the company.

Graphic support was provided by Complete HealthVizion, Inc., funded by Vertex Pharmaceuticals Incorporated.

CLIMB THAL-111 and CLIMB SCD-121 trials are sponsored by Vertex Pharmaceuticals Incorporated.