THE COBALT-LYM STUDY OF CTX130: A PHASE 1 DOSE ESCALATION STUDY OF CD70-TARGETED ALLOGENEIC CRISPR-CAS9–ENGINEERED CAR T CELLS IN PATIENTS WITH RELAPSED/REFRACTORY (R/R) T-CELL MALIGNANCIES

Swaminathan P. Iyer, R. Alejandro Sica, P. Joy Ho, Boyu Hu, Jasmine Zain, Anca Prica, Wen-Kai Weng, Youn H. Kim, Michael S. Khodadoust, M. Lia Palomba, Francine M. Foss, Kimberly Tipton, Erika L. Cullingford, Qiuling He, Anjali Sharma, Steven M. Horwitz

1Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, 2Department of Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, United States of America, 3Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, Australia, 4Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, Salt Lake City, 5Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, United States of America, 6Princess Margaret Cancer Centre, Toronto, Canada, 7Division of Blood and Marrow Transplantation and Cellular Therapy, 8Department of Dermatology, 9Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, 10Memorial Sloan Kettering Cancer Center, New York, 11Department of Dermatology, Yale School of Medicine, New Haven, 12CRISPR Therapeutics, Cambridge, United States of America

Presented at the European Hematology Association Annual Meeting. 11 June 2022
Disclosures

• The COBALT™ – LYM study of CTX130™ is sponsored by CRISPR Therapeutics

• Dr. Swaminathan P. Iyer is a Professor, Lead of the T Cell Lymphoma Program, Department of Lymphoma/Myeloma, Division of Cancer Medicine at The University of Texas MD Anderson Cancer Center

• Dr. Iyer receives research support from CRISPR Therapeutics, Merck, Seagen, Rhizen, Acrotech, Legend, Innate Pharma, Astra Zeneca, Dren Bio, Yingli, and Secura Bio; participates in scientific advisory boards for Seagen, Yingli, and Secura Bio; and participates in Biocure’s and Targeted Oncology’s speaker bureaus as a speaker

Presented at the European Hematology Association Annual Meeting, 11 June 2022
Overview

- **PTCL and CTCL are complex diseases with significant unmet need and limited approved systemic therapies.** Few therapies effectively treat all disease compartments (lymph nodes, skin, blood) or achieve meaningful CR rates. For patients with R/R PTCL and transformed CTCL, median OS is 1-2.5 and <5 years, respectively\(^1\)-\(^5\)

- **CTX130\(^{TM}\) is a first-in-class, CD70-targeting allogeneic CAR T therapy that represents the first potential cell therapy for TCL patients.** Allogeneic cellular therapy approaches for TCL have greater potential to meet the unmet need in this patient population given the patients’ own T cells are not suitable for autologous manufacturing\(^6\)

- **CD70** is a ligand for CD27 with transient expression on activated lymphocytes and is **highly expressed in many TCLs**\(^7\)-\(^10\)

- **Preliminary data from dose escalation of CTX130 shows promising efficacy,** including a 70% ORR and a 30% CR rate at DL\(\geq\)3 (\(\geq\)3x10\(^8\) cells), with an acceptable safety profile

References:

Presented at the European Hematology Association Annual Meeting. 11 June 2022
Role of CD70 in Immune Response and Cancer

Physiological role of CD70
- Transient CD70 expression on activated lymphocytes
- Controls naïve and memory T-cell activation via interaction with CD27

Role of CD70 in cancer
- Increased CD70 expression has been detected in certain cancers, including 85% of TCL samples with a median surface expression of 40%
- Possible immunosuppressive role due to T-cell exhaustion, apoptosis, or Treg expansion

References:

TCL, T cell lymphoma; Treg, regulatory T cell.

Presented at the European Hematology Association Annual Meeting. 11 June 2022
CTX130

- **Autologous approaches continue to be challenging** due to the poor function of donor T cells, potential for fratricide, and risk of infusing transduced malignant CAR T cells into patients.

- **CTX130 is an investigational allogeneic, CRISPR/Cas9 gene-edited, anti-CD70 CAR T cell therapy** with TRAC, β2M, and CD70 disruptions.
 - An **anti-CD70 CAR cassette is site-specifically inserted into the TRAC locus** by homology-directed repair.

- **CTX130 is manufactured from T cells collected from a healthy donor**, which are then selected and edited before expansion and cryopreservation for **off-the-shelf availability**

References:

Presented at the European Hematology Association Annual Meeting. 11 June 2022.

β2M, β2-microglobulin; CAR, chimeric antigen receptor; MHC, major histocompatibility complex; TCR, T-cell receptor; TRAC, T-cell receptor alpha constant.
CTX130 – Preclinical Data

CD70 surface expression on clinical samples of TCL as measured by immunohistochemistry

Consistent with the IHC data, TCL cell lines HuT78, HH, HuT102 and MJ (blue lines) show a range of CD70 expression from low/medium to high. RCC cell lines A498 and ACHN show high and low expression, respectively. MCF-7 and K562 are CD70-negative cell lines shown as negative controls.

CTX130 was co-cultured with HuT78 or K562 cells for 24 hours at a range of T-cell:tumor cell ratios. CTX130 showed high cytotoxicity against CD70-expressing cells, even the low expressing HuT78 cell line, but not against CD70-negative cells (K562).

3x10⁶ HuT78 cells were injected subcutaneously into the right flank of NSG mice. When mean tumor size reached an average size of ~66 mm³, mice were either left untreated or injected intravenously with 8.6x10⁶ CTX130 cells per mouse (N=5 per group).

COBALT-LYM (NCT04502446) Clinical Trial Design

Phase 1, open-label, multicenter, international, single-arm study (NCT04502446) evaluating the safety and efficacy of CTX130, an investigational, allogeneic CAR-T cell targeting CD70

Key inclusion criteria
- Age ≥18 years
- Confirmed diagnosis of a CD70+ (≥10% of cells) T-cell malignancy
- ECOG performance status of 0–1
- Adequate renal, liver, cardiac, and pulmonary organ function
- Platelets >25,000/mm³ and absolute neutrophil count >500/mm³

Key exclusion criteria
- Prior allogeneic SCT
- Prior treatment with any anti-CD70 agents
- History of certain CNS, cardiac, or pulmonary conditions

*As assessed by Lugano response criteria for PTCL, International Society for Cutaneous Lymphoma Response Criteria for CTCL.
CNS, central nervous system; CR, complete response; CTCL, cutaneous T cell lymphoma; D: day; LD, lymphodepletion; PD, progressive disease; PR, partial response; PTCL, peripheral, T cell lymphoma; SCT, stem cell transplant; SD, stable disease.

Primary endpoint
- Part A (Dose Escalation): Incidence of adverse events
- Part B (Cohort Expansion): Objective response rate*

Secondary endpoints
- Progression-free survival
- Overall survival

Presented at the European Hematology Association Annual Meeting. 11 June 2022
Patient Demographics and Pharmacokinetics

Patient characteristics, All Dose Levels n = 18

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median years (range)</td>
<td>65 (39 – 78)</td>
</tr>
<tr>
<td>ECOG PS at screening, n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8 (44)</td>
</tr>
<tr>
<td>1</td>
<td>10 (56)</td>
</tr>
<tr>
<td>Prior lines of therapy, median n (range)</td>
<td>4 (1 – 8)</td>
</tr>
<tr>
<td>TCL subtype, n (%)</td>
<td></td>
</tr>
<tr>
<td>PTCL</td>
<td>8 (44)</td>
</tr>
<tr>
<td>AITL</td>
<td>3 (17)</td>
</tr>
<tr>
<td>ALCCL</td>
<td>1 (6)</td>
</tr>
<tr>
<td>ATLL</td>
<td>3 (17)</td>
</tr>
<tr>
<td>PTCL - NOS</td>
<td>1 (6)</td>
</tr>
<tr>
<td>CTCL (MF, SS, tMF)</td>
<td>10 (56)</td>
</tr>
<tr>
<td>Skin involvement, n (%)</td>
<td>12 (67)</td>
</tr>
<tr>
<td>Blood involvement, n (%)</td>
<td>6 (33)</td>
</tr>
<tr>
<td>Bone marrow involvement, n (%)</td>
<td>4 (22)</td>
</tr>
<tr>
<td>CD70 expression level, median % (range)</td>
<td>90 (20 – 100)</td>
</tr>
<tr>
<td>Second CTX130 infusion received, n (%)</td>
<td>5 (28)</td>
</tr>
</tbody>
</table>

Pharmacokinetics, All Dose Levels n = 18

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak expansion concentration (C_{max})</td>
<td>80.9</td>
</tr>
<tr>
<td>geometric mean copies/μg (range)</td>
<td>(<4.9 – 61,349.8)</td>
</tr>
<tr>
<td>Time to peak expansion (T_{max})</td>
<td>8.5 (5 – 14)</td>
</tr>
</tbody>
</table>

Patient Demographics and Pharmacokinetics

Presented at the European Hematology Association Annual Meeting. 11 June 2022

* For summary statistics of C_{max}, values below the limit of detection (LOD) were imputed as half the LOD and values below the limit of quantification (LOQ) were imputed as (LOQ+LOD)/2. † From Screening to D28 post infusion.

† Includes first infusions only
Safety

Data cutoff date: 26 April 2022

Adverse Events of Interest, N (%)

<table>
<thead>
<tr>
<th></th>
<th>DL1 3x10^7 N=4</th>
<th>DL2 1x10^8 N=4</th>
<th>DL3 3x10^8 N=5</th>
<th>DL4 9x10^8 N=5</th>
<th>DL≥3 N=10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gr 1-2</td>
<td>Gr ≥3</td>
<td>Gr 1-2</td>
<td>Gr ≥3</td>
<td>Gr 1-2</td>
</tr>
<tr>
<td>CRS</td>
<td>1 (25)</td>
<td>-</td>
<td>1 (25)</td>
<td>-</td>
<td>4 (80)</td>
</tr>
<tr>
<td>ICANS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3 (60)</td>
</tr>
<tr>
<td>GvHD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Infections</td>
<td>2 (50)</td>
<td>1 (25)</td>
<td>-</td>
<td>1 (25)</td>
<td>2 (40)</td>
</tr>
</tbody>
</table>

- **Acceptable safety profile across all DLs:** no DLTs or instances of TLS with LDC or CTX130
- **Treatment-emergent (TE) SAEs** occurred in 10/18 (56%) patients and included Gr ≥3 infections (n=4, 22%), Gr 1-2 tumor hemorrhage, Gr ≥3 syncope, Gr ≥3 presyncope, Gr ≥3 HLH, Gr ≥3 drug eruption, and Gr 1-2 ligament sprain (n=1 each, 6%). With exception of one Gr 3 infection, all other TE SAEs were not found to be related to CTX130.
- **There was a sudden death** in 1 patient with William’s syndrome in the context of a lung infection, deemed unrelated to CTX130.
- **Three cancers were diagnosed** in patients with CTCL post treatment: 1 patient had EBV-associated lymphoma which resolved and a squamous cell carcinoma, 1 patient had invasive ductal breast carcinoma which was resected and cured. These were deemed unrelated to CTX130.

All events listed in table are treatment-emergent adverse events.

CRS, cytokine release syndrome; DLT, dose-limiting toxicity; EBV, Epstein-Barr virus; Gr, grade; GvHD, graft versus host disease; HLH, hemophagocytic lymphohistiocytosis; ICANS, immune effector cell associated neurotoxicity syndrome; LDC, lymphodepleting chemotherapy; SAE, serious adverse events; TLS, tumor lysis syndrome.

Presented at the European Hematology Association Annual Meeting. 11 June 2022
Efficacy

Best overall response, n (%)

<table>
<thead>
<tr>
<th>Cell dose (CAR+ T cells)</th>
<th>DL1 3x10⁷ N=4</th>
<th>DL2 1x10⁸ N=4</th>
<th>DL3 3x10⁸ N=5</th>
<th>DL4 9x10⁸ N=5</th>
<th>DL≥3 N=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Response Rate (ORR)</td>
<td>2 (50)</td>
<td>0</td>
<td>3 (60)</td>
<td>4 (80)</td>
<td>7 (70)</td>
</tr>
<tr>
<td>CR</td>
<td>1 (25)</td>
<td>0</td>
<td>2 (40)*</td>
<td>1 (20)</td>
<td>3 (30)</td>
</tr>
<tr>
<td>PR</td>
<td>1 (25)</td>
<td>0</td>
<td>1 (20)</td>
<td>3 (60)</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Disease Control Rate (DCR = CR + PR + SD)</td>
<td>3 (75)</td>
<td>1 (25)</td>
<td>5 (100)</td>
<td>4 (80)</td>
<td>9 (90)</td>
</tr>
</tbody>
</table>

Data cutoff date: 26 April 2022

*1 patient in DL3 who initially achieved a PR was re-infused at DL4 following a change to SD and achieved a CR at DL4.
CAR, chimeric antigen receptor; CR, complete response; CTCL, cutaneous T cell lymphoma; DCR, disease control rate; DL, dose level; ORR, overall response rate; PR, partial response; PTCL, peripheral T cell lymphoma; SD, stable disease.

Presented at the European Hematology Association Annual Meeting. 11 June 2022
CTCL Responses Observed Across All Compartments

*Day 7 assessment; †Initially unconfirmed CR, later confirmed to be PR by mSWAT and biopsy.
CR, complete response; CTCL, cutaneous T cell lymphoma; DL, dose level; PR, partial response; SD, stable disease.

Presented at the European Hematology Association Annual Meeting. 11 June 2022
Efficacy (continued)

- CTCL DL1/DL2
- CTCL DL3
- AITL DL4
- ATLL DL1/DL3
- CTCL DL3
- ATLL DL3/DL4
- CTCL DL4
- AITL DL3
- CTCL DL3
- CTCL DL1
- AITL DL4
- CTCL DL2
- ATLL DL2
- ALCCL DL4
- PTCL-NOS DL1
- CTCL DL2
- CTCL DL2

Time from first CTX130 infusion (months)

- CR (Complete Response)
- PR (Partial Response)
- SD (Stable Disease)
- PD (Progressive Disease)
- Re-Infusion
- Anticancer therapy
- Stem cell transplant
- Death

AITL, angioimmunoblastic T cell lymphoma; ALCCL, anaplastic large cell lymphoma; ATLL, adult T-cell leukemia/lymphoma; CR, complete response; CTCL, cutaneous T cell lymphoma; DL, dose level; PD, progressive disease; PR, partial response; PTCL-NOS, peripheral T cell lymphoma not otherwise specified; SD, stable disease

Presented at the European Hematology Association Annual Meeting. 11 June 2022
Case Study

Complete Response with Single-Infusion of CTX130

Subject Overview

Patient profile
- 47-year-old male with stage IVA2 transformed mycosis fungoides (tMF)
- 5 prior lines of therapy
- Refractory after last treatment with brentuximab vedotin
- CD70+ expression: 100% at baseline

Efficacy
- CR at D28 after a single infusion of 9×10^8 CAR+ T cells
- Remains in CR at Month 3

Safety
- Gr 3 anemia (D3) & Gr 3 neutropenia (D4)
- All other AEs were Gr 1

AE, adverse event; CAR, chimeric antigen receptor; CR, complete response; D, day; DL, dose level; Gr, grade; mSWAT, modified severity weight assessment tool.

Presented at the European Hematology Association Annual Meeting. 11 June 2022
Case Study

Complete Response at D28 After Re-Infusion

Subject Overview

Patient profile
- 54-year-old female with stage IV ATLL, with skin involvement
- 2 prior lines of therapy
- Refractory after last treatment with IFNα-b, zidovudine
- CD70+ expression: 100% (skin), 1% (lymph nodes) at baseline

Efficacy
- PR at D28 after 1st infusion of 3x108 CAR+ T cells and SD at Month 3
- CR at D28 after 2nd infusion with 9x108 CAR+ T cells

Safety
- Gr 4 neutropenia (D8 post 1st infusion, D5 post 2nd infusion)
- All other AEs Gr 1-2

Response

<table>
<thead>
<tr>
<th>1st Infusion (DL3)</th>
<th>D28 Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC chart</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Infusion (DL4)</th>
<th>D28 Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC chart</td>
<td></td>
</tr>
</tbody>
</table>

Bone marrow	Skin
Before 1st infusion | 25% ATLL with aberrant CD25+ | mSWAT = 3.6
After 2nd infusion | 1.3% aberrant cells, 0.1% of total | mSWAT = 0

AE, adverse event; ATLL, adult T-cell leukemia/lymphoma; CAR, chimeric antigen receptor; CR, complete response; D, day; DL, dose level; Gr, grade; IFN, interferon; mSWAT, modified severity weight assessment tool; PR, partial response; SD, stable disease.

Presented at the European Hematology Association Annual Meeting. 11 June 2022
Conclusions

- Relapsed / refractory T cell lymphoma patients, including those with large cell transformation, have limited options and poor prognosis; there are few therapies which effectively treat multiple disease compartments (lymph nodes, skin, blood)

- CTX130 is the first allogeneic CAR T directed against the novel target CD70 to demonstrate preliminary findings of encouraging efficacy and a tolerable safety profile. Although median CD70 expression amongst patients with relapsed / refractory T cell lymphoma was 90%, responses were observed across all levels of CD70 expression

- In the first-in-human COBALT-LYM trial, **CTX130 has demonstrated an acceptable safety profile in heavily pretreated patients** with relapsed / refractory T cell lymphomas

- Of the initial 18 TCL patients presented here today, none had achieved a CR in their previous line of therapy. By comparison, we have observed **clinically meaningful responses with CTX130, including a 70% ORR and 30% CR rate at DL≥3** (≥3x10^8 cells)

- **CTX130 represents a potentially best-in-class cell therapy treatment for T cell lymphoma patients**
Acknowledgments

• Thank you to all the patients, families and investigators involved with the COBALT-LYM Study
• This study was sponsored by CRISPR Therapeutics

COBALT-LYM (NCT04502446) Study Sites